AutoCAD LT2019 スマホ対応クラウド教科書で より深く、より広く学べる 初心者から実務者まですぐに役立つ! AutoCAD LT2018 対応 対応 初心者から実務者まですぐに役立つ! AutoCAD LT2018 スマホ対応クラウド教科書で より深く、より広く学べる 初心者から実務者まですぐに役立つ! AutoCAD LT2018 人口を行った。 人口を行うまれます。 人口を行った。 人口を行った。

中森隆道著 【第1部・機能編/第2部・製図編】

Web 専用ページから データを取得できます クラウド教科書を随時 更新しています

スマホ用 QRコード 本書で使用したCADデータを収録しています CAD部品(電気設備・空調設備・土木・仮設・地図記号) く全1003ファイル> (旧版):建設工事標準詳細図(101ファイル) 土木構造物標準詳細図(192ファイル) ハッチングパターン(地質系(62種類)・建築系(7種類))

・線種(地図線〈5種類〉・特殊線〈2種類〉・SXF線種〈14種類〉)

25年以上にわたる企業講習と職業訓練校での 教育実績に基づく AutoCAD LT 解説の決定版! スマートフォン対応のクラウド教科書を随時更新中!

本文オールカラー

・サンプルプログラムはWebからダウンロード

・仕事に役立つDWGをWebに満載

Ι

第1部 機能編

第1章 画面構成

第1節(起動と終了)

AutoCAD LT の起動	2
AutoCAD LT の終了	5
背景色の変更	6
グリッド表示	7
モデル空間	8
レイアウト空間	9

第2節(インターフェース)

インターフェース	10
アプリケーションメニュー	11
クイック アクセス ツールバー	12
ファイルタブ	13
リボンメニュー	14
コマンドウィンドウ	15
ステータスバー	16
マウスカーソル	17
UCS アイコン	17

第3節 (メニュー)

リボンメニュー一覧	18
ホームタブ	19
挿入タブ	20
注釈タブ	21
パラメトリックタブ	22
表示タブ	23
管理タブ	23
出力タブ	24
コラボレートタブ	24
プルダウンメニュー	25
ショートカットメニュー	28
グリップメニュー	29
ステータス バー メニュー	30

第4節(新規作成と保存)

テンプレートから新規作成	32
テンプレートの種類	33
既図面から新規作成	34
図面を開く	36
図面を閉じる	37
上書き保存	38
名前を付けて保存	39
書き出し	40

第2章 基本操作

第1	節(基本操作)	
	 座標系の種類	42
		43
	絶対極座標	43
	相対座標	44
	相対極座標	44
	直接距離入力	45
	極トラッキング	45
	ダイナミック入力	46
	オブジェクト スナップ	48
	図心スナップ	51
	<u> ズーム</u>	52
	画面移動	55
	ナビゲーションバー	56
	ビューポート環境設定	58
	名前の付いたビューポート	59
	ビューポート結合	60
	ビューポート呼び出し	61

第2節(ユーザー座標系)

UCS(原点)	62
UCS(オブジェクト)	63
UCS(ビュー)	64
UCS(3 点)	65
UCS(ワールド)	66

第3章 図面設定

第1節 (図面設定)

オプション(ファイル)	68
オプション(表示)	70
オプション(開く / 保存)	72
オプション(印刷とパブリッシュ)	74
オプション(基本設定)	76
オプション(作図補助)	78
オプション(選択)	80
図面範囲設定	82
グリッド設定	84
スナップ設定	85
ダイナミック入力	86
極トラッキング	88
オブジェクトトラッキング	89
直交モード	90
線の太さ	91
透過性	92
選択の循環	94
クイック プロパティ	95
画層プロパティ管理	96
線種設定	100
線種の尺度設定	101
単位設定(長さ)	102
単位設定(角度)	103
文字スタイル管理	104
寸法スタイル管理	106
マルチ引出線スタイル管理	109
色設定	111
ページ設定管理	112
印刷	114
印刷スタイル	118
印刷スタイルの変換	130

第4章 図面管理

第1節(図形管理)	
クイック選択	132
クイック プロパティ	134
類似オブジェクト	136
	137
オブジェクトプロパティ管理	138
ツールパレット	140
デザインセンター	142
	144
グループ	146
グループ管理	147
表示順序	148
 貼り付け	150
	151
	152
	153

第2節(図形情報)

距離	154
半径	155
	156
	157
	158
	160
	161

第3節(図面比較)2019新機能

図面比較の設定	162
図面比較の結果	164
比較図面の表示順序	166
比較図面のフィルタ	168
比較図面の変更セット	169
図 面比較の 制約	170

第5章 作成機能

第1節(平面図形)

線分	172
構築線	173
放射線	174
スプライン	175
ポリライン	176
一 円	178
円弧	180
楕円	182
楕円弧	183
長方形	184
ポリゴン	185
リージョン	186
ワイプアウト	187
雲マーク	188
複数点	189
ディバイダ	190
計測(メジャー)	191
ドーナツ	192
ブロック作成	193
属性定義	194
属性管理	196
境界作成	198
ハッチング	200
グラデーション	204
文字記入	208
マルチテキスト	210
 表	214
フィールド	220

第 1	節(平面図形)	
		226
	 移動	228
	 複写	229
	ストレッチ	230
	 長さ変更	231
	フィレット	232
	面取り	233
	 回転	234
	鏡像	235
		236
	オフセット	237
	トリム	238
	延長	239
	部分削除	240
	結合	241
	分解	242
	変更	243
	オブジェクトプロパティ管理	244
	プロパティコピー	245
	配列複写(矩形)	246
	配列複写(円形)	248
	配列複写(パス)	250
	配列複写編集	252
	ポリライン編集	256
	ブロック編集	258
	属性編集	260
	文字編集	262
	マルチテキスト編集	264
	ハッチング編集	266

第7章 寸法機能

第1節(寸法記入)

す法の種類	270
	271
クイック寸法	274
 長さ寸法	276
	277
	278
 直径寸法	279
	280
	281
	282
	283
	284
	285
	286
中心マーク	288
中心線	289

第2節(マルチ引出線)

マルチ引出線スタイル管理	290
マルチ引出線	292
データム記号	294

第3節(寸法編集)

グリップ編集	296
寸法マスク	298
	299
スライド寸法	300
	301
寸法値位置合わせ(中心)	302

第1	節(図形挿入)	
		304
		306
	デザインセンター	308
	ツールパレット	309
		310
		311
	インプレイス参照編集	312

第2節(イメージ挿入)

イメージのアタッチ	314
イメージのクリップ	315
イメージの調整	316
イメージのフェード	317

第3節 (PDF)

PDF 書き出し	318
 PDF 読み込み	319
PDF アンダーレイをクリップ	320
PDF アンダーレイ画層	321

第4節 (DXF・DWF)

DXF で保存	322
DXF を開く	323
DWF アタッチ	324

第9章 ダイ	イナミックブロック	
第1	節(ダイナミックブロックとは?)	
	ブロックとダイナミックブロックの違い	326
第2	節(ダイナミックブロックの作成手順)	
	ダイナミックブロック作成準備	328
	ブロックをダイナミックブロックに変換	330
第3	節(パラメータとアクション)	
	ブロックエディタ	332
	パラメータの種類	334
	アクションの種類	336
第4	節(ダイナミックブロックの作成)	
	ダイナミックブロック(配列複写)	338
	ダイナミックブロック (XY 配列複写)	342
	ダイナミックブロック(反転)	346
	ダイナミックブロック(ストレッチ)	350
	ダイナミックブロック (ルックアップ)	356
	ダイナミックブロック(可視性)	360
	/ <u> </u>	
第10章 レイアウト		
第1	節(異尺度対応図とは?)	
	設計オブジェクトと注釈オブジェクト	368
第2	節(非異尺度対応図のレイアウト)	
	非異尺度対応図の作成	370

非異尺度対応図の作成	370
表題欄(図枠)の挿入	372
レイアウトの配置	373
印刷尺度の指定	374
複数のレイアウトを配置	376
複数の寸法スタイルと画層の設定	378
尺度に適した寸法スタイルと画層	379
レイアウトに寸法を記入	380
非異尺度対応図作成のポイント	383

第3節(異尺度対応図のレイアウト)

異尺度対応スタイルの設定	384
異尺度対応寸法の使用	388
非異尺度オブジェクトを異尺度対応に変更	390
1 つのオブジェクトに複数の異尺度対応を付加	392
全てのオブジェクトに複数の異尺度対応を付加	394
異尺度対応オブジェクトの仕組み	396

第2部 製図編

第1章 製図の手順

第1	節(新規製図)	
	作図開始までの手順	400
	基本スタイルの設定	402
	異尺度対応スタイルの設定	408
	デザインセンターの利用	410
第2	節(印刷スタイル)	
	2つの印刷スタイル	412
	名前の付いた印刷スタイル	413
	 色従属印刷スタイル	414
	 印刷スタイルテーブル	416

第2章 建築用テンプレート

	 印刷をモデル空間で行う	418
	印刷をレイアウト空間で行う	419
第1	節(モデル空間用テンプレートを作成)	
	テンプレート (作成手順)	420
	テンプレート (図面範囲)	421
	テンプレート (画層名)	421
	テンプレート (文字スタイル)	423
	テンプレート (寸法スタイル)	424
	テンプレート(その他の設定)	426
	テンプレート (図枠作成)	427
	テンプレート(表題欄作成)	428
	テンプレート(保存)	429

第2節(レイアウト空間用テンプレートを作成)

作成手順	430
尺度変更	431
ブロック作成	431
ブロック挿入	432
保存	432

第3章 建築図面作成

第1節(モデル空間に作図し、印刷する)

	434
テンプレート挿入	435
 壁芯(通り芯)	436
	438
躯体(壁)	440
建具(扉)	442
建具(窓)	444
家具等	446
 文字	448
ハッチング	450
寸法	452
モデル空間で印刷	454

第2節(レイアウト空間に配置し、印刷する)

レイアウト空間に図枠挿入	456
ビューポート作成と配置	457
	459
印刷	460

第4章 機械用テンプレート

		462
	印刷をレイアウト空間で行う	463
第1		
	テンプレート (作成手順)	464
	テンプレート(画層名)	465
	テンプレート (文字スタイル)	467
	テンプレート (寸法スタイル)	468
	テンプレート (その他の設定)	470
	テンプレート (図枠作図)	471
	テンプレート (表題欄作図)	472
	テンプレート (保存)	473
第2	 節(レイアウト空間用テンプレートを作成)	
		474
	ブロック作成	475
		476

第5章 機械図面作成

第	1	節(モデル空間に作図する)	
		作成手順	478
		テンプレート使用	479
		中心線作図	480
		外形線作図(円)	482
		外形線作図(フィレット)	484
		ハッチング	486
		配列複写(円形)	488
		寸法	490

第2節(レイアウト空間に配置し、印刷する)

レイアウト空間に配置	492
ビューポートに配置	493
尺度設定	494
外部参照で取り込み	496
外部参照図を変更	497
印刷	498

Index(索引)	
		+ .
	ア行	索-1
	力行	索-1
	サ行	索-2
	タ行	索 -2
	ナ行	索-3
	ハ行	索-3
	マ行	
	ラ 行	索 -4
	ワ 行	索 -4

画面構成

2 [作成] タブ

下図は AutoCAD LT 2019の起動画面です。このスタート画面には 2 つのタブがあります。 最初に表示されるのは、[作成]タブです。もう一つの[学習]タブに切り替えるには、画面の下部や 左端にある [学習](赤丸)を指示します。

	[作成]タブ	
1	スタートアップ	[テンプレート ファイル][既図面][シートセット] を 開いたり、 Autodesk にアクセスして [テンプレート] 等が取得できます。
2	最近使用したドキュメント	直近に使用した図面が表示されます。図面を押しピンで固定して 常にこのリストに表示しておくこともできます。
3	接続	Autodesk からオンラインサービスの提供を受けたり、Autodesk に フィードバックを送ることができます。

(3) [$\lambda \varphi - h \nabla \gamma T$]

[図面を開始]や[テンプレート]を使用して、すぐに新しい図面を作成できます。 また、Autodesk のサイトに接続して別のテンプレート ファイルをダウンロードして使用したり、 Autodesk が提供するサンプル図面を利用することもできます。

	スタートアップ		
1	図面を開始	既定のテンプレート ファイルから新しい図面を作成します。	
2	テンプレート	AutoCAD LT が提供するテンプレートを使用できます。(図 1)	
3	ファイルを開く	既図面を開きます。最後に使用したフォルダが表示されます。	
4	シートセットを開く	シートセット (**.dst) を開きます。	
(5)	オンライン テンプレートを追加	Autodesk のサイトからテンプレートを取得できます。	
6	サンプル図面を参照…	Autodesk 提供のサンプル図面を検索できます。	

起動時の初期画面(赤枠の中が作図領域)

3 UCS[ビュー]			
UCS(W	/ [*] 理(U)		
1□ UCS 管	[*] 理(U)		
直交投	[*] 影 UCS(H)		
1 ↓ UCS 移	[*] 動(V)		
リボンメニュー	ありません		
プルダウンメニュー	[ツール]->[UCS]->[ビュー]		

1 ユーザーの視点方向を Z 軸の正の方向にする

 ①プルダウンメニュー [ツール] -> [UCS] -> [ビュー]を選択します。(図1) ②ユーザーが見ている方向がビュー (Z軸の正の方向)になります。(図2)

[右手の法則]

=0 memo

右手を手のひらを上にして握った時、親指を伸ばした方向がX軸の正の方向で、 人差し指を伸ばした方向が Y 軸の正の方向です。 それから、中指を自分に向けて伸ばします。これが乙軸の正の方向です。 これら3つの指は、それぞれX,Y,Zの正の方向を示しています。

UCS(ビュー)

2次元図形 (Z座標=0)では、ユーザー座標系が XY 平面に対して 垂直の関係になければ正確に作図することはできません。 (ユーザーはZ軸の正の方向から XY 平面に作図します。)

4 UCS[3 点]	
UCS(V 「回 UCS 管 直交掛 1生 UCS 和	<mark>//</mark> f理(U) g影 UCS(H) 穿動(V)
リボンメニュー	ありません
プルダウンメニュー	[ツール]->[UCS]->[3点]
コマンド	Ucs -> 3

① 原点とX軸、Y軸の正の方向を指示する

①プルダウンメニュー [ツール]-> [UCS]-> [3 点]を選択します。(図 1)

新しい原点を指定 <0,0,0>: マウスで点 P1 を指示します。(図 2)

② X 軸上での正の点を指定 <715.2456,1233.7092,0>:マウスで点 P2 を指示します。(図 3) ③ XY 平面の Y 座標上での正の点を指定 <714.2456,1234.7092,0>:マウスで点 P3 を指示します。(図4)

④(図5)のように原点の移動と、XYZ軸の回転が同時に行われました。 ⑤円や文字も正確に描かれます(図6)

図形は XY 平面に平行に作図されます。 Z 座標の初期値は <0> です。 (作図したい面を XY 平面にします。)

25 寸法スタイル ⁴	管理 [DimStyle]
4 	ISO-25 ▼ 型 I 小 法記入 ● 現在を使用 ▼ □ □ □ 法記入 ● 日 □ □ □ □ 大記入 ● ● ● ● ● ●
リボンメニュー	[注釈]タブ->[寸法記入]パネル->[寸法スタイル管理]
プルダウンメニュー	[形式]->[寸法スタイル管理]
コマンド	DimStyle

🚹 [寸法スタイル]の新規作成

①[注釈]タブ -> [寸法記入]パネルの右下の矢印を選択します。(ダイアログボックス ランチャー)
 ②[寸法スタイル管理]ダイアログが表示されます。(図1)

初期値として [Annotative][Standard][ISO-25] の寸法スタイル名があります。

③[新規作成]のボタンを押して、新しい寸法スタイルを作成します。(下図では <Archi> で新規作成)

2 寸法線の設定

① [寸法線]タブを選択します。(図 2)

②寸法線の[並列寸法の寸法線間隔]を <5> にします。(図 2-1 の A)(印刷時の大きさを指定します。)
 ③寸法補助線の[補助線延長長さ]を <1> にします。(図 2-1 の B)(印刷時の大きさを指定します。)
 ④寸法補助線の[起点からのオフセット]を <1> にします。(図 2-1 の C)(印刷時の大きさを指定します。)

寸法スタイル管理

3 矢印の設定

① [シンボルと矢印]タブを選択します。(図3)

② [矢印]のタイプから、矢印タイプを選びます。(下図では <30 度開矢印 > を選択しています。)
 ③ [矢印のサイズ]を指定します。(印刷時の大きさを指定します。)

4 寸法文字の設定

① [寸法値]タブを選択します。(図 4)

② [文字スタイル]を選択します。<初期値>:ISO-25(下図では <Archi> に変更しています。)
 ③ [文字の高さ]を設定します。<初期値>:2.5(印刷時の大きさを指定します。)

図面設

1 2 点間の距離を表示する

①[ユーティリティ]パネル->[距離]を選択します。

② オプションを入力 [距離 (D)/ 半径 (R)/ 角度 (A)/ 面積 (AR)/ 体積 (V)] < 距離 (D)>: _distance

<u>1 点目を指定 : P1</u> を指示します。

③ <u>2 点目を指定 または [複数点 (M)]:</u> P2 を指示します。(<mark>滑走路の P1 から P2</mark>)

④テキストウィンドウに長さやX、Y、Zの増加分が表示されます。

【 AutoCAD LT テキスト ウインドウ - 中部国際空港.dwg	_		×
編集(E)			
コマンド: MEASUREGEOM オプションを入力 [距離(D)/半径(R)/角度(A)/面積(AR)/体積(V)] <距離(D 1 点目を指定: 2 点目を指定 または [複数点(M)]:)>: _d	istance	
長さ = 2066001.7960、 XY平面の角度 = 0、 XY平面からの角度 = 0 デルタ X = 2066001.7702、 デルタ Y = 326.8613、 デルタ Z = 0.0000 オブションを入力「距離(0)/手径(0)/角度(0)/面積(00)/休積(V)/終了(X)T	〈距離	(11)>: X	
コマンド:		(0)// 0	

2 半径 [Measurege	om(R)]
リボンメニュー [オ	<−ム]タブ -> [ユーティリティ] パネル -> [半径]
プルダウンメニュー [ソ	/ール]->[情報]->[半径]
コマンド Me	easuregeom -> R

1 円や円弧の半径と直径を表示する

①[ユーティリティ]パネル->[半径]を選択します。

②<u>オプションを入力 [距離 (D)/ 半径 (R)/ 角度 (A)/ 面積 (AR)/ 体積 (V)] < 距離 (D)>: _radius</u>

<u>円弧または円を選択 :</u> 円弧 S1(バルコニーの円<mark>弧</mark>) を選択します。

③テキストウィンドウに、半径と直径が表示されます。

154

図面管理

	[ハッチング作成]リボンタブ		
1	境界	ハッチングは定義した境界に基づいて作成されます。	
2	パターン	ユーザーが定義したハッチング パターンを指定することができます。	
3	プロパティ	ハッチングの間隔には単位がありません。尺度で間隔を調整します。	
4	原点	ハッチングが始まる起点を変更できます。初期値は図面の原点です。	
(5)	オプション	[自動調整]や[異尺度対応]を適用するかどうかを選択します。	
6	閉じる	ハッチング リボンタブを閉じます。	

オプション⑤のダイアログ ボックスランチャー (赤丸)を指示すると、従来のハッチング ダイアログが 表示されます。

1 ハッチングパターンの選択

ハッチング パターンの一覧表示には2通りあります。

① [パターン]パネルのランチャーを表示する。(図1)

② [プロパティ]や[クイックプロパティ]の[ハッチングパターンパレット]を表示する。(図2)

2 ハッチングパターンの作成

① [作成]パネル-> [ハッチング]を選択します。
 ② [ハッチング作成]リボンタブが表示されます。
 ③ [パターン]からハッチングパターンを選びます。(例:ANS31)
 ④ [プロパティ]から[角度]、[尺度]、その他の指定をします。
 ⑤マウスでハッチングの領域内でクリックします。(図1のP1)
 ⑥右ボタンで確定すると、ハッチングが作成されます。(図2)

作成機能

正核能

キーボードから [ARRAYCLASSIC] と入力すると、古いタイプの [配列複写] ダイアログが表示されます。 このコマンドで作成された配列複写のオブジェクトは、それぞれが独立したオブジェクトになります。

1 矩形状配列複写

[修正]パネル->[矩形状配列複写]を選択します。

①オブジェクトを選択:イス (S1)を選択します。

 ②編集する配列のグリップを選択または[自動調整(AS)/基点(B)/項目数 (COU)/間隔(S)/列数(COL)/行数(R)/レベル数(L)/終了(X)]<終了>: リボンタブの[列]を<3>、[間隔]を<600>、[行]を<3>、[間隔]を<600>として、

	∎# 列:	3	📑 行:	3	
	₩ 間隔:	600	■ 間隔:	600	
矩形状	🚻 合計:	1200	王 合計:	1200	
タイプ		列		行▼	

③下図のように1度に配置されます。

④確定するまでは、リボンタブの数値を変更したり、マウスでグリップを操作して変更できます。
 (図 1)は⑥の[コーナーグリップ]を右上に動かして、[列]と[行]を同時に変更しています。
 (図 2)は④の[列間の距離]グリップを右に動かして、横の間隔(列)を変化させています。

修正機能

寸法機能

「修正]ボタンを押して、引出線スタイルを編集します。

②[引出線の形式]タブ

- また、線の色や線種、線の太さも設定できます。

2矢印のタイプと大きさを指定します。

- [拘束]は線分の折り曲げの回数を指定します。
- 2 [参照線の設定]では参照線(水平線)の<有り・無し>と長さを指定します。
- ⑤[尺度]ではマルチ引出線が異尺度対応でないとき、マルチ引出線の尺度を指定します。 通常は印刷する尺度の逆数を指定します。

④ [内容]タブ

- ●[マルチ引出線の種類]は引出線につなげる文字のタイプを指定します。(テキスト、ブロック等)
- ②「文字オプション」では文字スタイルや、文字の色、大きさを指定します。
- ⑧[引出線の接続]では文字と参照線の接続方法や間隔を指定します。

291

第1部8章【外部ファイル】

図面を PDF として保存する

①右の図面を PDF として保存します。 画層やリンクの情報も保存できます。

 [DWF/PDF に書き出し]パネル -> [書き出し]-> [PDF] を選択します。 ③ [PDF に名前を付けて保存] ダイアログが表示されます。 ④ [ファイル名] に名前を入力して、[OK] ボタンを押します。

PDF 読み込み [PDFImport] 🖫 SHX 文字認識 PDF 読み込み PDF 50540 50-PDF 文字を DGN 読み込み 読み込み 結合 読み込み 読み込み [挿入]タブ->[読み込み]パネル->[PDF読み込み] リボンメニュー プルダウンメニュー ありません コマンド PDFImport

1 PDF を図面ファイルとして読み込む (PDF を DWG に変換)

① [読み込み]パネル -> [PDF 読み込み]を選択します。

(2) [PDF ファイルを選択]ダイアログから、読み込む PDF を選択します。(左下図)

③ [PDF を読み込む] ダイアログで [位置] [読み込む PDF データ][画質] [オプション] を指定して

[OK] ボタンを押します。(右下図)

④選択した PDF が図面内に挿入されます。 [機械.pdf]が[Drawing1.dwg]内に挿入されました。

コマンド: pdfimport PDF アンダーレイを選択 または [ファイル(F)] <ファイル>: _file PDF ファイル()のページ -1976423752 を読み込んでいます... コマンド: マアノーフマンドホス

⑤ [画層プロパティ管理] で確認すると、[PDF_0] の ように画層名の前に [PDF_] が付加されています。

⑤ [オプション] ボタンを押して、PDF の詳細を指定できます。

大

第1部9章【ダイナミックブロック】

第1部9章【ダイナミックブロック】

	第3節	パラメータとアクション
1	ブロックエディ	ィタ [Bedit]
		ブロック 作成 「ロック定義 ▼ 「 「 「 」 「 」 「 」 」 「 」 」
リボ プル コマ	ボンメニュー /ダウンメニュー /ンド	[挿入]タブ->[ブロック定義]パネル->[エディタ] [ツール]->[ブロックエディタ] Bedit

①[ブロック定義]パネルの[エディタ]を選びます。

②作図画面からブロック専用の画面([ブロックエディタ]リボン)に切り替わります。

	[ブロックエディタ]リボンタブ			
1	開く / 保存	図面内にあるブロックを開いたり、ブロック定義を保存します。		
2	管理	オーサリング パレットを開きます。		
3	アクション パラメータ	ブロックにパラメータとアクションを追加します。		
4	可視性	ダイナミックブロックに可視パラメータを追加します。 図形の可視状態をコントロールします。		
5	閉じる	ブロックエディタを終了して図面に戻ります。		
6	パラメータ	ブロックにパラメータを追加します。		
7	アクション	ブロックにアクションを追加します。		
8	パラメータセット	ブロックにパラメータとアクションを同時に追加します。		

パネル	説明
「」」」 「」」 「」」 「」」 」 「」」	ブロック内の図形に位置、距離、角度などの制御点を 指定します。 図形に情報を設定するためにも使用します。
	選択したパラメータに特定の動作を割り当てます。
▲ 着 直線状移動ペア まみ ↓ ▲ 「 ↓ ↓ 「 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	パラメータとアクションの組み合わせを定義したもの です。(一度に両方をセットできます。)
一 一 一 一 可視性の状態の 一 可視性の状態 一	複数のブロックの表示の ON / OFF を指定します。 三面図の切り替えなどに使用します。

③以下の図(ボルト)は、[直線状]パラメータと[ストレッチ]アクションが与えられたダイナミック ブロックです。

④①のパラメータは右方向に[直線状]に動くことを示しています。回転することはできません。
 ②のアクションは[ストレッチ]を行うことを示しています。

⑤このようにダイナミックブロックは、[パラメータ]と[アクション]の2つで成り立っています。 最初に[パラメータ]を設定し、そのパラメータに[アクション]を関連付けています。

第1節

注釈オブジェクトとは?

設計オブジェクトと注釈オブジェクト

1 [設計オブジェクト]と[注釈オブジェクト]

①図面は機械部品図や建築図などの「設計オブジェクト」と文字や寸法などの「注釈オブジェクト」で 成り立っています。

設計図はモデル空間で実寸で作図し、注釈はレイアウト空間における希望する大きさで記入します。 したがって、文字や寸法などの「注釈オブジェクト」は印刷時の大きさを考慮して作成します。

(図A)は「水栓金具」の設計図ですが、モデル空間に配置した図枠もレイアウト空間に配置した図枠も 同じ A3 用紙の大きさです。

このためモデル空間の寸法文字や表題欄の文字は印刷時と同じ大きさの2ミリで記入しています。

一方、(図B)は「木造住宅」の設計図です。モデル空間では実寸で作図しますが、レイアウト空間では A3の用紙に収まるように配置しますから図枠も住宅の大きさに合わせて拡大して配置します。 その拡大率は印刷する尺度の逆数になります。つまり、印刷を 1/100 で行う場合は、モデル空間に記入 する文字や寸法(注釈オブジェクト)の大きさを100倍にします。

例えば、印刷する文字の大きさを2ミリにする場合は、モデル空間では200ミリの大きさで記入します。

2 「非異尺度対応注釈 1 の特徴

寸法文字や矢印などの大きさは、「寸法スタイル」ダイアログの「フィット」タブにある「寸法図形の 尺度]で全体の尺度を指定します。

左下図は、印刷時に <1/1> で等倍印刷する場合、右下図は <1/100> で縮小印刷する場合の設定です。

このように、印刷尺度に応じた寸法スタイルを事前に作成しておく必要があります。

[文字スタイル]や他の注釈オブジェクトも同様です。

そのため、印刷尺度が異なる数だけ「寸法スタイル」や「文字スタイル」が必要になります。

[異尺度対応注釈]の特徴

異尺度対応注釈とは、レイアウト空間でどのような印刷尺度に設定しても、注釈オブジェクト自身が 自動的に大きさを印刷尺度に合わせてくれる機能です。

[寸法スタイル]で2ミリと設定すれば、どの印刷尺度でも2ミリの大きさで表示してくれます。 そのため、[寸法スタイル]や[文字スタイル]は1つで足りることになります。

異尺度に対応できる注釈オブジェクトの種類

異尺度に対応できる注釈オブジェクトは、以下の6つです。

寸法	[寸法スタイル管理]ダイアログの[フィット]タブから[異尺度対応]を選択。
文字	[文字スタイル管理]ダイアログの[サイズ]から[異尺度対応]を選択。
引出線	[マルチ引出線スタイル管理]ダイアログの[尺度]から[異尺度対応]を選択。
ハッチング	[ハッチングとグラデーション]ダイアログの[オプション]から[異尺度対応]を選択。
ブロック	[ブロック定義]ダイアログの[動作]から[異尺度対応]を選択。
ブロック属性	[属性定義]ダイアログの[文字設定]から[異尺度対応]を選択。

Ð

6

デザインセンターの利用

[画層][線種][寸法スタイル][文字スタイル]を他の図面から取り込む ① (図 1) はテンプレートの新規図面です。

この図面の [画層] [線種] [寸法スタイル] [文字スタイル] はテンプレートの初期値しかありません。 [デザインセンター]を使えば、他の図面から使用したい画層やスタイルを取り込むことができます。 (図1) (画層)

② (図 2)は既存の図面です。

この図にある [画層][線種][寸法スタイル][文字スタイル] を白紙の新規図面に取り込みます。 (図 2) (画層)

- ③ [表示]タブ->[パレット]パネル->[デザインセンター]を使います。
- [デザインセンター]の中から < 土木図 1.dwq> ①を開き、[画層] ②から画層一覧を表示させます。 コピーしたい画層③をマウスで選択して、右の図面内に<ドラッグ&ドロップ>します。 選択した画層が新規図面にコピーされます。

Drawingt (a v mb v AUTODESK* SEEK オルダ 聞いている回面 ヒストリ 聞いている回面 4 × Drawing 1.0 D-MTR D-DOC 1 日本回1.dwg -/9 マルチ引出線スター 8 「層プロパラ E. -@ 118 D-MTR D-MTR 管理 私転 #5 - 12 非細ビュースタイル - 12 非細ビュースタイル 9 🔍 🔆 🚽 📃 Defpoints D-MTR-FRAM 一日 売スタイル Ð 会示スタイル
 A、文字スタイル 説明がありません YUsers¥ka07y¥Desktop¥acad¥第1部...¥圓層 (24 項目)

④同様にコピーしたい文字スタイルをマウスで選択して、右の図面内に<ドラッグ&ドロップ>します。

⑤同様にコピーしたい寸法スタイルをマウスで選択して、右の図面内に<ドラッグ&ドロップ>します。

(42000,29700)

+

作成手順		
1	[図面範囲]を決めます。(用紙は A3、縮尺は 1/100)	
	[用紙] の大きさと [尺度] により図面範囲が決定されます。A3 の用紙に 1/100 の 縮尺で作成しますので、図面範囲は < 横 42000 ミリ、縦 29700 ミリ > になります。	
6	[画層名 < レイヤー名 >]を決めます。	
2	建築用の画層名とその画層に割り当てる色と線種を決めます。	
2	[文字]のスタイルを決めます。	
	タイトル用の文字や図面内で使用する文字のスタイルを作成します。	
	[寸法]のスタイルを決めます。	
4	図面内で使用する寸法のスタイルを作成します。	
A	その他、細かい設定を行います。	
	[グリッド][スナップ][作図単位] などの設定を行います。	
6	図枠とタイトル文字等を作図します。	
	図面枠の作図と会社名や図面名称などを記入していきます。	
7	このように設定した図面を [テンプレートファイル] として保存します。	
	新規図面は、このテンプレートファイルを基にして作図します。	

1 [図面範囲]を決めます。(用紙は A3、縮尺は 1/100)

①プルダウンメニュー[形式]->[図面範囲設定]

コマンド '_limits

[図面範囲]は印刷設定時に関係してきます。

②プルダウンメニュー [表示]->[ズーム]->[図面全体]

<u>コマンド:</u>Z <u>窓のコーナーを指定、表示倍率を入力 (nX または nXP)</u> <u>または [図面全体 (A)/ 中心点 (C)/ ダイナミック (D)/</u> <u>オブジェクト範囲 (E)/ 前画面 (P)/ 倍率 (S)/ 窓 (W)/</u> 選択オブジェクト (O)] < リアル タイム >: A

[図面範囲]を設定した後は、[図面全体] で全体を表示するようにしましょう。

2 [画層名 < レイヤー名 >]を決めます。

① [画層] パネル -> [画層プロパティ管理] を選びます。(最初は < 0 > 画層の一つしかありません。)

(0.0)

②[新規作成]のボタンを押します。

⊞

② [画層プロパティ管理]から [通り芯]の表示を <ON> に切り替えます。

画層▼

7013=4 -

③ 「寸法記入]-> 「長さ寸法」で、上側の寸法を記入していきます。

1本目の寸法補助線の起点を指定または<オブ ジェクトを選択 >: マウスで左端の通り芯の端点 (P1) を取ります。 (Oスナップの端点モードにしておきます。) 2本目の寸法補助線の起点を指定: マウスで二番目の通り芯の端点 (P2) を取ります。

④寸法線の位置を指定 または

「マルチテキスト(M)/ 寸法値(T)/ 寸法値角度(A)/ 水平(H)/垂直(V)/回転(R)]: 寸法線の出す位置をマウスで指示します。(P3) 寸法値 = 3640 🖊

⑤続けて[直列寸法記入]コマンドで直列寸法を 記入していきます。 2本目の寸法補助線の起点を指定または「元に戻す (U)/ 選択 (S)] < 選択 >: マウスで次の通り芯の端点 (P4) を指示します。 2本目の寸法補助線の起点を指定または「元に戻す <u>(U)/ 選択 (S)] < 選択 >:</u> 同様にして、右端まで順番に通り芯を選択してい きます。

⑥下図のように寸法が作図されます。

🚹 作図の [図面範囲] を決めます。(用紙は A3、縮尺は 1/1)

[図面]の大きさと[用紙]の大きさは同じですので、図面範囲は < 横 420 ミリ、縦 297 ミリ > です。

2 [図枠]を作成します。

図面範囲が < 横 420 ミリ、縦 297 ミリ > の大きさですから、印刷するときに用紙の内側に図枠が収まる ように図枠サイズを設定します。

この例では、横の長さを <410 ミリ >、縦の長さを <280 ミリ > にしています。

(図枠の線の太さを印刷時に 0.5 ミリにする場合は、実際に作図する時の線の太さも 0.5 ミリのままです。)

図枠はモデル空間に作成します。

上図では、図枠が横 410 ミリ、縦 280 ミリになっていますので、この図面を 1/1 で印刷した場合、 図枠の横は 410 ミリ、縦は 280 ミリで出力されます。(同じ大きさ) A3 の用紙に図形を配置する時点では等倍なので、印刷の尺度は 1/1 になります。

1 印刷の [レイアウト] を決めます。(用紙は A3、縮尺は 1/1)

[図面]の大きさと[用紙]の大きさは同じですので、レイアウト範囲は < 横 420 ミリ、縦 297 ミリ > です。

2 [図枠]を作成します。

レイアウト範囲が < 横 420 ミリ、縦 297 ミリ > の大きさですから、印刷するときに用紙の内側に図枠が 収まるように図枠サイズを設定します。

この例では、横の長さを <410 ミリ >、縦の長さを <280 ミリ > にしています。

(図枠の線の太さを印刷時に 0.5 ミリにする場合は、実際に作図する時の線の太さも 0.5 ミリのままです。)

図枠はレイアウト空間に作成します。

上図では、図枠が横 410 ミリ、縦 280 ミリになっていますので、この図面を 1/1 で印刷した場合、 図枠の横は 410 ミリ、縦は 280 ミリで出力されます。(同じ大きさ) 図形は A3 の用紙に配置する時点でも等倍なので、印刷の尺度は 1/1 になります。 幾械用テ

開いた瞬間に[外部参照]コマンドで挿入した図面 < buhin> は、最新の図に変更されています。

④[出力]->[印刷]コマンドを使います。

印刷する範囲				
[モデル]と[レイアウト]で共通				
オブジェクト範囲	描かれているオブジェクトの範囲を印刷			
窓	マウスで四角で囲った範囲を印刷			
表示画面	表示されているオブジェクトの範囲を印刷			
[モデル]				
図面範囲	LIMITS(図面範囲) で設定されている範囲を印刷			
[レイアウト]				
レイアウト	ページ設定の用紙サイズの範囲を印刷			

⑤[印刷]のダイアログが表示されます。

[印刷領域]の項目では < レイアウト > を選びます。

[印刷尺度]の項目で、尺度を <1:1> にして [印刷プレビュー] ボタンを押します。

⑥ [OK] ボタン、又は下の [印刷] ボタンを押して印刷します。

[印刷領域] memo

-

プリンターの種類によって、印刷可能な範囲が違っています。 そのため、印刷漏れが生じる可能性があります。

そのような場合は、図枠自体の大きさをプリンターの作図範囲に合わせて作成する 必要があります。

右のように、赤線で表される箇所は印刷範囲から 外れています。 赤線が無くなるように、図枠を縮小したり位置を 変更する必要があります。

